Towards Learning and Classifying Spatio-Temporal Activities in a Stream Processing Framework

نویسندگان

  • Mattias Tiger
  • Fredrik Heintz
چکیده

We propose an unsupervised stream processing framework that learns a Bayesian representation of observed spatio-temporal activities and their causal relations. The dynamics of the activities are modeled using sparse Gaussian processes and their causal relations using a causal Bayesian graph. This allows the model to be efficient through compactness and sparsity in the causal graph, and to provide probabilities at any level of abstraction for activities or chains of activities. Methods and ideas from a wide range of previous work are combined and interact to provide a uniform way to tackle a variety of common problems related to learning, classifying and predicting activities. We discuss how to use this framework to perform prediction of future activities and to generate events.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Spatio - Temporal Activity Learning and Recognition in a Stream Processing Framework

Learning to recognize and predict common activities, performed by objects and observed by sensors, is an important and challenging problem related both to artificial intelligence and robotics. In this thesis, the general problem of dynamic adaptive situation awareness is considered and we argue for the need for an online bottom-up approach. A candidate for a bottom layer is proposed, which we c...

متن کامل

Spatio-Temporal Variation of Suspended Sediment Concentration at Downstream of a Sand Mine

The growing population led to greater human need to use natural resources such as sand and gravel mines. Direct removal of sands from the bed river leads to increase suspended sediment concentrations in downstream of harvested area and creates other problems viz. filling reservoirs, change in hydraulic characteristics of the channel and environmental damages. However, the range of temporal and ...

متن کامل

Spatio-Temporal Stream Processing in Microsoft StreamInsight

Microsoft StreamInsight is a platform for developing and deploying streaming applications. StreamInsight embraces a temporal stream model to unify and further enrich query language features, handle imperfections in event delivery and define consistency guarantees on the output. With its extensibility framework, StreamInsight enables developers to integrate their domain expertise within the quer...

متن کامل

Large-Scale Human Activity Mapping using Geo-Tagged Videos

This paper is the first work to perform spatio-temporal mapping of human activity using the visual content of geo-tagged videos. We utilize a recent deep-learning based video analysis framework, termed hidden two-stream networks, to recognize a range of activities in YouTube videos. This framework is efficient and can run in real time or faster which is important for recognizing events as they ...

متن کامل

Deeply Semantic Inductive Spatio-Temporal Learning

We present an inductive spatio-temporal learning framework rooted in inductive logic programming. With an emphasis on visuo-spatial language, logic, and cognition, the framework supports learning with relational spatio-temporal features identifiable in a range of domains involving the processing and interpretation of dynamic visuo-spatial imagery. We present a prototypical system, and an exampl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014